
1State of Application Security 2024 - Computest Security

>>

State of Application
Security 2024
Technical Write Up of Key Findings

01State of Application Security 2024 - Computest Security

Table of Contents >>

State of Application Security 2024 .. 02
Background
Our research methodology in brief
Objective and focus of this write up

#1 Unpatched, outdated or unsupported components 04
Infrastructure
Web-applications
End-of-life

#2 Authentication issues .. 06
Causes for common authentication issues
Types of data that could be accessed

#3 Cross-site scripting risks ... 09
DOM-based XSS
Reflective XSS
Stored XSS

OWASP Top 10 Comparison .. 12

02State of Application Security 2024 - Computest Security

State of Application Security 2024

Background
Computest Security performs several hundred security tests every year on all types of

applications. Our specialists have in-depth information and unique insights into the

security of applications in the Netherlands and abroad. By analyzing this information

and sharing it in our report ‘The State of Application Security 2024’ we want to create

awareness and demonstrate the urgency to actively contribute to strengthening societal

security by means of enhancing applications security.

Our research methodology in brief
The basis for this research is the slightly more than 300 application security tests that

we carried out during 2023 and in the first quarter of 2024. All these tests have been

conducted for various organizations that have requested this for various reasons. For

example, as part of their test cycle, because stakeholders or customers required this,

or based on (security) standards or regulations. Although these tests took place on

different types of applications, they were tested making use of the same method, based

on comparable test elements. This means that the different tests can be compared

with each other. The findings that were included for purposes of data analytics, were

used on anonymized basis. Below we provide insight into the most important results.

Objective and focus of this write up
This document was drawn up as a background to our management summary which

contains more generic findings and recommendations, and which is also accessible for

a less technically inclined audience. This write up contains some more detailed insights

for a more tech oriented crowd and puts more in depth focus on some of the key

findings. More specifically we provide some additional statistics and analytics for three

of the most prevalent and potentially dangerous issues, being:

>>

03State of Application Security 2024 - Computest Security

1. Unpatched, outdated or unsupported components (69%)

2. Authentication issues (34%)

3. Cross-site scripting risks (32%)

In addition, we also provide a comparison of our findings to the industry acclaimed Top

10 vulnerabilities periodically provided by OWASP.

For the conclusions and recommendations stemming from our State of the Application

Security 2024, we recommend to give the management summary a close read. This document

only contains relevant backgrounds related to three major vulnerabilities and a comparison

with OWASP’s top ten findings.

While these statistics might be interesting to the average person, a more tech-savvy

reader would likely love to dive deeper into the reasons behind common vulnerabilities.

Luckily, we are those people. That is why, for three very common and dangerous

problems: outdated software (69.17% of websites), unsupported software (39.13%) and

cross-site scripting (32.41%), we dove into the nitty gritty details and related impact to

uncover any associated mysteries.

04State of Application Security 2024 - Computest Security

>>

From a quantitative perspective, this is the most frequently observed vulnerability.

Nearly 70% of the applications we subjected to our testing activities, ultimately had

issues related to unpatched, outdated or unsupported components. Beneath we shed

light on some relevant statistics and analytics.

Infrastructure
The security tests included in this research were focused on application(s) and related

infrastructure. This infrastructure, which commonly consists of services that are exposed

to the internet – in most cases a web server – makes use of outdated software in 15% of

the cases. Much of the outdated software that was observed, contains publicly known

vulnerabilities. Of these cases, nearly 50% of these vulnerabilities could potentially

result in full server takeover, by for example using remote code execution. Taken from

this research, the Top 5 of outdated software on infrastructure level is:

1. PHP

2. NGINX and Apache Tomcat

3. Apache HTTP Server

4. OpenSSH

5. IIS

Web-applications
Taken from our findings concerning (web)applications, the outdated software that was

observed, mostly concerns client-side JavaScript libraries. We found that over half of the

tested applications (54%) make use of outdated libraries. One of the popular JavaScript

libraries is jQuery, which in turn amounts to 49% of the outdated libraries found.

Taken from all outdated JavaScript libraries in general, 63% are potentially vulnerable

to the risk of cross-site scripting (‘XSS’). In these cases, a publicly known cross-site

scripting issue has been observed. This does of course not imply that this vulnerability

#1 Unpatched, outdated or
unsupported components

05State of Application Security 2024 - Computest Security

can actually be exploited within the web application. In some cases, the application

has to make use of specific problematic functionality or implement the functionality

in a certain way to be directly vulnerable to XSS. However, this finding re-stresses the

(basic) importance of actively keeping this software up-to-date. The Top 5 of outdated

software on web application level is as follows:

1. jQuery

2. Moment.js

3. jQuery UI (including plugins)

4. Bootstrap

5. CKEditor

End-of-life
The previous section dissected results with respect to outdated and vulnerable software

for infrastructure and web applications. This section specifically highlights the risk of

end-of-life software. Of the tested applications where we found one or more pieces of

unsupported software 39% contained software that was end-of-life. This concerns for

example AngularJS, PHP 7, jQuery 1/2/3, Bootstrap 3 and older versions of Nginx and

Apache.

“During our tests, jQuery is
the most found End-of-life
software“

While 58% of this unsupported software was discontinued over 3 years ago, 45% was

even abandoned over six years ago, before 2018. It was even observed that Adobe Flex

or YUI 2 platforms were still used which were discontinued over 12 years ago. These

outcomes quite clearly underline the necessity of using up to date software to limit

obvious security flaws. The Top 5 of unsupported software taken from this research can

be listed as follows:

1. jQuery

2. Bootstrap

3. AngularJS

4. Angular

5. PHP

06State of Application Security 2024 - Computest Security

>>

With authentication being second on the list of biggest issues it is something worth

mentioning. Authentication vulnerabilities have been encountered in 34% of the

application security tests, indicating their significance. The causes vary and can range

from simply applications not applying authentication constraints to certain endpoints

or pages or as an effect from a bug discovered by a third-party vendor. One of the top

issues found is the lack of multi-factor authentication (MFA) for back-end portals as

well as front-end portals. Out of all authentication issues found, more than half (56%)

do not enforce MFA. Especially for portals that feature a separation between low and

high-privileged users this is an important security mitigation to add to web applications.

A common contender where authentication incorrectly is applied is using a URL with a

(predictable) token or identifier. Since the URL can get stored locally or on intermediate

systems such as a proxy, relying solely on a URL for access is insufficient and should be

combined with validating one’s session for granting access.

The information that can be extracted by poorly implemented authentication controls

differ from application to application, although the primary concern seems to be

Personally Identifiable Information (PII). The examples that were seen during tests

include social security numbers (BSN), phone number, email and passport scans.

In other portals financial information can be seen such as invoice payments or tax

information. Finally, it was possible to gain access to some service-specific files such as

accessible configuration files from the system or images uploaded to a portal.

#2 Authentication issues

“A multi-factor authentication

implementation was missing in

19% of the tests performed“

07State of Application Security 2024 - Computest Security

Causes for common authentication issues
All “Missing authentication” items have been examined for their different causes. As

can be observed, these are quite diverse. Provided the importance of understanding

the causes of common authentication issues, we have listed those that have been

observed:

• Of all projects, 34% have the item that matches “Missing authentication”

• Missing MFA in either the front- or backend login functionality (56% of all missing

authentication items, 19% of the total)

• Insufficient authentication (i.e. missing MFA) in the backend login functionality (39%

of all missing authentication items)

• No authentication required at all for a specific page or API endpoint (items provide

limited information as to why, likely not implemented in the code)

• MFA applied but no rate limiting applied on the OTP validation functionality

• GraphQL does not apply authentication or allows a GraphQL-specific vulnerability:

introspection (allows retrieving more data than a user should be allowed to)

• Authentication is implemented with a random token/id/GUID in combination with

the path to the file in the URL, but is considered sensitive information in URLs

• JWT authentication token is not validated

• Specific header required to access the resource but can be guessed (e.g. Referer

header including the company domain)

• Middleware issues (e.g. authentication is applied but caching results in a resource

being accessible)

• Bug in service of third-party vendor software

• Authentication applied but can be obtained in another way (e.g. source code of the

page already contains information)

08State of Application Security 2024 - Computest Security

Types of data that could be accessed
As can be derived from the table below, authentication issues may result in exposing

confidential information. Apart from more generic information related to organizational

matters – that require discretion – it is clear that exploiting authentication issues will in

most cases serve for a data privacy breach.

The following are examples of information that could be obtained:

• Passport information

• Tax information

• Email

• PII (e.g. NAW) information

• Personal signature

• Invoice payments

• Phone number

• Server-specific files such as configuration files or images uploaded to a portal

• BSN/social security information

09State of Application Security 2024 - Computest Security

>>

While modern web frameworks provide building blocks to pre-empt Cross Site Scripting

(XSS) vulnerabilities, it can be observed that this vulnerability still prevails in many

contemporary applications. This is either caused by the fact that existing mitigations

have not been applied properly, or resulting from issues that arise when no framework

or custom code is developed as an extension to the framework.

Cross-site scripting was encountered in 32% of the total performed security tests in

2023 and Q1 2024. 15% of these cases can be considered structural, where the platform

is littered with vulnerabilities and examining and cleaning the codebase would be the

only to resolve these issues. In 59% of the cross-site scripting cases, an attacker could

exploit the vulnerability without an existing user account. This obviously reduces the

amount of effort required for an attacker to target users and gain access to sensitive

data.

Possible cross-site scripting vulnerabilities are diverse. Based upon our research, XSS

can be typically divided in three subcategories, that may be at play in parallel (non

exclusive):

Provided the serious risks entailed with XSS we will provide more insight in the

manifestation of the three different types below.

#3 Cross-site scripting risks

Stored
(75,61%)

Reflective
(39,02%)

DOM-based
(9,76%)

“Cross-site scripting (XSS)
is possible in 1 in 3 (web)
applications“

10State of Application Security 2024 - Computest Security

DOM-based XSS
One of the issues that can be observed with DOM-based cross-site scripting is the use

of unsafe methods within JavaScript that are mis-used for DOM manipulation. User

input is the elephant in the room and has to be seen as untrusted. If it is seen as

trusted, it could otherwise mistakenly be directly injected into the DOM. For example,

using innerHTML will directly inject content into the DOM where HTML elements will

be directly interpreted by the browser. Instead, it would be better to make use of safe

assignment properties such as innerText, textContent or by modifying the value of the

element.

Frameworks such as AngularJS and React escape HTML by default when used in

templates, except when using purposely built-in functions that bypass the protection.

For example, React offers dangerouslySetInnerHTML which allows unescaped HTML

content.

Reflective XSS
While the web application development landscape has partially moved to client-side

frameworks such as React or AngularJS, It appears that a lot of web applications are

still using PHP. Even though there is a myriad of frameworks readily available, it can be

suggested that PHP web applications have been inherited but and not replaced over the

years. Of the total cross-site scripting vulnerabilities that were found, 26% stem from

applications built in PHP. The primary issue that arises is that language or framework-

specific helper functions that prevent cross-site scripting are not implemented. For

example, in PHP, the function htmlspecialchars() can be used to escape user input

for use in HTML. When using Django, is_safe can be used in templates to allow HTML

elements to be unescaped. While there are valid use cases for allowing unescaped

HTML, one has to know the source of the content. In most cases where a user has

influence over the content, this can introduce vulnerabilities.

Stored XSS
Stored is similar to reflective cross-site scripting in a few ways. The user-influenced

content can be reflected using JavaScript but can also use the same stack such as the

framework of the application to view data on a page, albeit without storing the data. It

is of importance that one has to know where data comes from and how it flows through

the application. Data that can be inserted as part of a URL is already seen as dangerous,

11State of Application Security 2024 - Computest Security

but data that is stored by other means such as localStorage is now always seen as a

threat and trusted by the client-side application.

A few notable examples can be seen observed regarding stored cross-site scripting that

are not encountered as compared to the other XSS-subcategories. Of the encountered

cross-site scripting vulnerabilities, another 26% are related to file uploads. This happens

in an instance where upload functionality is present and a file or document other than

intended can be uploaded and subsequentially be retrieved to execute the vulnerability.

Aside from restricting file uploads to a certain type by not only the extension but also the

MIME type, one also has to enforce the download of the file when accessing it. This can

be done, for example, by configuring the Content-Disposition header to attachment.

This will prevent loading potentially malicious content inline the web browser, which

would execute the code the web browser’s context. While a vector graphic element (SVG)

can be frequently used to embed JavaScript code in the XML document, there have also

been instances where modified PDF files or spreadsheet documents embedding HTML

elements can be used for this type of attack.

Another important aspect that must be noted is that cross-site scripting can be caused

by the incorrect usage of the Content-Type header. Many web applications make use of

an API which serves data in JSON. In some cases, the Content-Type header of these API

responses is not set to application/json but to, for example, text/html. If content is

reflected in the JSON response it is not an issue per se. However, when the request can

be visited in a browser and the JSON contains HTML elements, it is interpreted resulting

in cross-site scripting.

Taken from the observed total XSS cases, this latter – Stored XSS-variant – is most

prevalent (75% of the cases). We’ve observed the Reflective XSS variant in 39% of the

cases and DOM based XSS in 10% of the cases. The reason these numbers do not add

up to 100% is because platforms deemed vulnerable to more than one type at the same

time.

12State of Application Security 2024 - Computest Security

OWASP Top 10 Comparison >>

As you will probably know, there is a global initiative called the ‘Open Web Application

Security Project’ (OWASP). This is a vast network of specialists involved in promoting

application security. The ‘Top 10’ of vulnerabilities that OWASP periodically publishes is

a household name and serves as a point of reference for many involved in application

security. The OWASP list is created by researching incidents that have occurred,

examining the results of pen tests carried out, and sending a questionnaire to the

partners and specialists involved. For that reason, we also use OWASP as an important

professional reference for the tests we perform for our clients.

Based on the research results, we are able to make a comparison between ‘The State

of Application Security’ and the ‘Top 10’ published by OWASP (this is published every

four years). The ranking of the vulnerabilities in the OWASP list is based, among other

things, on the frequency, impact, and how easily the vulnerability can be exploited. It

is important to consider that in our research we looked at frequency and impact (the

latter based on the CVSS scoring).

You will find the consolidated results of this comparison in a table projected on the next

page.

State of Application Security 2024 - Computest Security 13

OWASP TOP 10 2021 COMPUTEST SECURITY TOP 10 2024 Difference

1 A01: Broken Access Control A05: Security Misconfiguration + 4

2 A02: Cryptographic Failures A07: Identification and Authentication Failures + 5

3 A03: Injection A02: Cryptographic Failures - 1

4 A04: Insecure Design A06: Vulnerable and Outdated Components + 2

5 A05: Security Misconfiguration A08: Software and Data Integrity Failures + 3

6 A06: Vulnerable and Outdated Components A04: Insecure Design - 2

7 A07: Identification and Authentication Failures A01: Broken Access Control - 6

8 A08: Software and Data Integrity Failures A09: Security Logging and Monitoring Failures + 1

9 A09: Security Logging and Monitoring Failures A03: Injection - 6

10 A10: Server-Side Request Forgery A10: Server-Side Request Forgery =

14State of Application Security 2024 - Computest Security

It is interesting to determine how the results of the Computest Security specialists

differ from those of OWASP. The ‘Top 10’ of Computest Security has a different ranking

than the OWASP top 10, except for vulnerability number 10. Security Misconfiguration

ranks our Top 10. This vulnerability consists of misconfigurations in either the system

services (such as a web server) or the application itself (e.g. incorrectly configured

security headers). This vulnerability is followed by identification and authentication (as

was described extensively above). The cryptographic failures can lie within the fact that

an older protocol is used (TLS 1.0, TLS 1.1 are still seen often) in combination with weak

encryption algorithms such as 3DES. As was highlighted above as well, we also observe

vulnerabilities related to vulnerable and outdated components being on the increase.

Since we perceive XSS as a vulnerability that overarches multiple categories – not only

‘Injection’ – we make no further reference to XSS here.

15State of Application Security 2024 - Computest Security

Any questions about
the State of Application

Security 2024?
Contact us:

info@computest.nl
+31(0)88 733 1337

Independent. Security. Partner. >>

	State of Application Security 2024
	Background
	Our research methodology in brief
	Objective and focus of this write up

	#1 Unpatched, outdated or unsupported components
	Infrastructure
	Web-applications
	End-of-life

	# 2 Authentication issues
	Causes for common authentication issues
	Types of data that could be accessed

	#3 Cross site scripting risks
	DOM-based XXS
	Reflective XXS
	Stored XXS

	OWASP Top 10 Comparison

